Fisheries monitoring of an offshore windfarm off New Jersey: Utilizing Autonomous Platforms

Josh Kohut, Grace Saba and MANY MANY MANY others Rutgers University

Mid Atlantic Bight is Physically Complex

MARACOOS: Mid-Atlantic Regional Association Coastal Ocean Observation System

Ocean Connections: Fisheries

Products enabled through partnership

Delaware State University

Rutgers

Coastal Ocean Observation Lab

Sturgeon Mission (2013)

- 79 Days at sea
 - 10 April 28 June
- 1,420 km
- 71,000 Profiles
 - Salinity
 - CHL
 - CDOM
 - Temperature
 - Oxygen
- 62 Sturgeon
- 187 Detection Hours

Sturgeon Mission (2013)

- 79 Days at sea
 - 10 April 28 June
- 1,420 km
- 71,000 Profiles
 - Salinity
 - CHL
 - CDOM
 - Temperature
 - Oxygen
- 62 Sturgeon
- 187 Detection Hours

Sturgeon Mission (2013)

- 79 Days at sea
 - 10 April 28 June
- 1,420 km
- 71,000 Profiles
 - Salinity
 - CHL
 - CDOM
 - Temperature
 - Oxygen
- 62 Sturgeon
- 187 Detection Hours

Short term environmental research priorities (2020-2021)

- Develop a methods and metrics document to define what monitoring should be done and how
- Link the physical effects of offshore wind energy development to biological effects
- Coordinate existing efforts to maximize utility of available resources and expand scale of inference
- **Conduct** feasibility studies to identify the **types and scale of potential effects** and focus research in the eastern U.S.
- **Examine** effects of offshore wind energy development on **ocean stratification**
- Assess changes in light conditions

Search: 'State of the Science Workshop' https://www.nyetwg.com/_files/ugd/78f0c4_0942f9d60ff84b45b6bea7e33ad6044e.pdf

Short term environmental research priorities

- **Develop** a **methods and metrics** document to define what monitorin
- **Link** the **physical effects** of offshore wind energy development to **b**
- **Coordinate** existing **efforts** to maximize utility of available resource
- **Conduct** feasibility studies to identify the **types and scale of potent** the eastern U.S.
- **Examine** effects of offshore wind energy development on ocean stratification
- Assess changes in light conditions

Search: 'Partners in Science Workshop Rutgers'

https://rucool.marine.rutgers.edu/wp-content/uploads/2021/09/2021-Partners-Workshop-Report-FINAL.pdf

Final Report

Partners in Science Workshop: Identifying Ecological Metrics and Sampling Strategies for Baseline Monitoring During Offshore Wind Development

> Authors: Joseph Brodie, Ph.D. (RUCOOL) Josh Kohut, Ph.D. (RUCOOL) Douglas Zemeckis, Ph.D. (NJAES)

> > Workshop Hosts:

for Offshore Wind

Ocean robots: Tracking dynamic seascapes to inform offshore wind development

State Commitments: ~39 GW by 2040 Federal Goal: 30 GW by 2030

Sources: DOE 2021 Offshore Wind Market Report and NCSL As of August 2021

The Dynamic Ecology

Ocean robots: Tracking dynamic seascapes to inform offshore wind development

Orsted Ocean Wind ECO-PAM Project

https://go.rutgers.edu/ECO-PAM

Ocean robots: Tracking dynamic seascapes to inform offshore wind development

The Dynamic Ecology

The Dynamic Environment

Orsted Ocean Wind

Informing the Plan

Dynamic mapping of ecological features

High Resolution Mapping focused on the Ocean Wind Site: Fish Telemetry

Leadershin

Dynamic seascape mapping can inform offshore wind development

Dynamic mapping of ecological features MODIS Gradients across Water Masses Feb 15 2021 23:59:59 Orsted **Ocean Wind**

- Temperature Salinity Density Ocean currents Dissolved oxygen Chl Fluorescence **CDOM** Fluorescence **Optical backscatter**
 - Active acoustics (38 Khz) Active Acoustics (120 KHz) Active Acoustics (200 KHz) **Passive Acoustics** Fish telemetry

THE

Industry-focused efforts in the Mid-Atlantic

MODIS Gradients across Water Masses Feb 15 2021 23:59:59

*Glider with oceanographic, telemetry, and active acoustic sensors will test the potential for autonomous platforms to augment/replace traditional vessel-based efforts

Ocean Wind RUTGERS

ANOGRAPHIC UN

