
Offshore Wind Farm Contributions to a Regional Environmental and Ecological Monitoring System to Address Multi-User Needs a New Jersey RMI Project

Josh Kohut, Mike Crowley, Doug Zemeckis & Kaycee Coleman *Rutgers University*

Tony MacDonald & Tom Herrington Monmouth University

Cris Hein & Kristen Ampela National Renewable Energy Lab (NREL)

Kris Ohleth & Lisa DeMarsico Special Initiative on Offshore Wind (SIOW)

Offshore Wind Developers and OEMs Meeting: Engineering Focused Discussion

Agenda:

11:30	Welcome & Introductions* - Kris Ohleth, SIOW
11:45	Topic Background - Tony MacDonald, Monmouth University
	RMI Project Overview & Timeline - Josh Kohut, Rutgers University
11:55	Examples of Offshore Sensors - Doug Zemeckis, Rutgers University
12:05	Existing Technology Databases - Cris Hein & Kristen Ampela, NREL
12:15	Brief Q&A - Doug Zemeckis, Rutgers University
12:20	Facilitated Discussion & Next Steps - Kris Ohleth

*Participants will be initially muted during presentations. Please unmute during introductions and facilitated discussion. Please add questions for Q&A into chat during presentations.

Topic Background Tony MacDonald, Monmouth University

RMI Project Overview & Timeline Josh Kohut, Rutgers University

- Task 1 Provide recommended language on monitoring requirements/guidance to be included in the third NJ OREC solicitation.
- Task 2 Develop a Conceptual Plan for individual wind energy area contribution to a Regionally-Based Environmental and Ecological Monitoring System

Visit our project website for more information:

Research and Monitoring Initiative

Conceptual Plan Development & Project Timeline (Task 2)

Topic 1) Statement of Observing Network Objectives

April 2024: Introductory webinar and survey launch
Mid-May 2024: Survey deadline and presentation of preliminary results at RMI Symposium
End of May 2024: Webinar to present final survey results and summarized objectives

Topic 2 & 3) Description of the Observing System Components and Recommended Deployment Methodology

June-August 2024: Dissemination of Instrumentation List July 2024: State of the Science, State of the Technology side meeting October 2024: Developer and OEM meeting: engineering focus

Topic 4) Description of the Recommended Data Quality and Management Standards

July 2024: State of the Science, State of the Technology side meeting November 2024: Engage data managers

Monitoring and Observing Objectives

→ Ecological and Environmental Research

Climate Impacts

OSW Specific Impacts

- → Management of Living Marine Resources
- → Other Guiding Objectives including:

Weather forecasting

Technology Innovation

Topics 2 and 3 - Observing Systems Components and Deployment Methods

State of the Science Workshop (July)

State of the Technology side meeting takeaways:

- → Standardization is a priority multisensor, all-inclusive, standardized platform or network.
- → More clarity on budget and schedule parameters - at what point/s can sensors be integrated?
- → Collaboration and discussions with engineers to understand opportunities and challenges.

2024 State of the Science Workshop

2024 State of the Science Workshop on Offshore Wind Energy, Wildlife, and Fisheries

MTS marine technology society

RWSC

Regional Wildlife Science Collaborative for Offshore Wind

Examples of Offshore Oceanographic Sensors

Dissolved Oxygen 5-14 VDC, 0.12 kg

Water Temp & Salinity 32x5", 9-28 VDC, 7.3kg

Representative Sensor Specifications:

→ Size: \sim 10cm to 2m

Currents and waves 21x14cm, 12-48W, 2.2kg

Plankton Imagery 24-36VDC, 35 Watts 1x0.26m, 32kg

Avian/Bat Radar 22x25", 25 lbs, 200-300W

→ Weight: ~0.2-30 kg

→ Power: ~5-40 VDC; 10-50W (Radar: 300W)

Examples of Offshore Ecological Sensors

Acoustic Telemetry

Telemetry Receiver Lithium Battery ~ 13 months 73 mm diameter, 308 mm length

Cabled Receiver Power Supply DC 10-24 V 51 mm diameter, 327 mm length

The Atlantic Cooperative Telemetry Network

Visual Surveys

Baited Remote Underwater Video (BRUV) GoPro Cameras, Lithium Batteries

SubC Imaging Observatory Camera System Voltage 18-32 Vdc

Passive Acoustic Monitoring

Digital Acoustic Monitoring "DMON" Buoy

noto credit: JASCO Applied Sciences

AUV PAM 220 mm diameter 1.5 m length

Existing Technology Databases Cris Hein & Kristen Ampela, NREL

- National Offshore Wind Research & Development Consortium
 Developed by Worley Consulting & BRI
 - <u>https://nationaloffshorewind.org/projects/technology-development-priorities-for-scientifically-robust-and-operationally-compatible-wildlife-monitoring-and-adaptive-management/</u>
- Technology Databases-Birds & Marine Mammals
- Downloadable excel files
- In depth information on each type of technology (e.g., passive acoustics, satellite tags) & on specific technologies (e.g., Soundtrap ST600HF)
- Static with no plans for future updates
- Accompanied by 5 technical reports & 1 publication

• "Broad" table example

. Al	A	В	С	D	F	Н	I.	K
1	Technology Type	If other Technology Type, specify	Species/species group	Availability 🔻	System Overview	Geographical scale	Current development stage	Real time or Archival
2	Passive Acoustics	Bottom mounted PAM systems	Marine Mammal	Commercially-available; Custom; Contact developer for access	acoustic signals continuously or on duty cycle	MESO/medium (several turbines)	Validated; currently deployed/used	Archival
	Autonomous Underwater Vehicle (AUV)	Include surface and underwater	Marine Mammal	Commercially-available; Lease; Custom	and underwater. AUVs are platforms that can collect a wide range of data (acoustic, oceanographic etc.). Gliders are wave or sola	MESO/medium (several turbines); MACRO/large (entire OSW farm)	Currently deployed/used	Both

• "Detailed" table example

	A	В	С	L	М	N	0	р
1							1	
2	Technology Type	Name	Model	Temporal Scale: Duty Cycle	Current Deployment Stage	Availability 👻	Location	If on Turbine, specify where
13	Passive Acoustics	DMON/LFDCS	NA	Continuous, Triggered Event	Implemented	Custom	Water column	NA
	Autonomous Underwater Vehicle (AUV)	Slocum glider	G3	Can be adjusted	Tested but not for OSW, Tested for OSW	Commercially-available	Independent System	NA

• Wind Energy Monitoring & Mitigation Technologies Tool

- Developed by IEA Wind Task 34: WREN
- o <u>https://tethys.pnnl.gov/wind-energy-monitoring-mitigation-technologies-tool</u>

- Technology Database-Land-based & Offshore Wind / All Environmental Interactions
- Searchable interactive Tool or downloadable excel file
- Higher level descriptions on specific technologies
- Evergreen, updated quarterly
- Available publications & reports linked to each technology
- Links to technology website

• Interactive Tool

Category:	Hier	archy:	Industry:	Implementa	tion Phase: Stresso	r:
- Any -	✔ - An	y -	✓ - Any -	✓ - Any -	✓ - Any -	~
Receptor:	Dev	elopment Status:	Research Status:	Search:		
Choose some opti	ons 🗸 - An	y -	✓ - Any -	•		Apply
Туре	Stressor & Receptor	Technology	Description	Placement & Integration	Research Summary	Citations
Monitoring Offshore Planning, Operation	Displacement Birds, Bats	3Bird 3Bird Radar Offshore System &	3Bird Stabilized Offshore Radar System - stabilized ornithological radar for marine research on migrating birds detects automatically birds and bats on the open sea. 3Bird Radar has its own independent self- levelling systemRead more	Radar equipment are placed on vessels' decks.		No available documents.
Monitoring, Mitigation Land-based Planning, Operation	Turbine Collision Birds, Bats	Accipiter Radar Corp. Accipiter NM1-8A Avian Radar System &	The Accipiter® NM1-8A Avian Radar System is a software-definable, 2D surveillance radar specifically designed to detect and track birds and bats Read more	Mounted near wind farm	Small-Scale Field Study Brand et al. (2011) tested and compared multiple types of radars. Criteria included automatic tracking, sampling protocols, data streaming, data integration, and data fusionRead more	Brand et al. 2011

Discussion

→ What is the typical interaction between developers and turbine suppliers regarding sensor deployment re: design, engineering, etc?

→ When in the design process would sensor inclusion be an opportunity step?

→ Discuss the dynamic between regulators recommending vs requiring sensors.

Discussion

→ Could there be a physical placeholder on turbines as a standard space for inclusion of sensors? Dedicated communications lines? Power supply?

→ What are the biggest impediments and limiting factors to the implementation of this type of request?

→ Is it preferable to have a baseline required/recommended set of sensors for all East Coast projects? Or to require on a project-by-project basis?

→ Other areas for discussion – legal, HSE, logistics, etc

Next Steps

Your continued feedback is important!

- \rightarrow Where are the gaps?
- → What did we not capture in this discussion?
- → Please feel free to add your additional thoughts/comments to the Qualtrics Form linked in the Chat.
- → We will be setting up bilateral meetings to address gaps as needed. Please let us know if there are others in your organization we should connect with on these important questions.

Thank you for your participation.